Color Quantization by Modified K-Means Algorithm
نویسندگان
چکیده
منابع مشابه
On Color Image Quantization by the K-Means Algorithm
In this paper we show the main properties of k-means algorithm as a tool for color image quantization. All experiments have been carried out on color images with different number of unique colors and different colorfulness. We have tested the influence of methods of determination of initial cluster centers, of choice of distance metric, of choice of color space. In our tests we have used two di...
متن کاملImproving the performance of k-means for color quantization
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to ...
متن کاملModified K-Means Algorithm for Genetic Clustering
The K-Means Clustering Approach is one of main algorithms in the literature of Pattern recognition and Machine Learning. Yet, due to the random selection of cluster centers and the adherence of results to initial cluster centers, the risk of trapping into local optimality ever exists. In this paper, inspired by a genetic algorithm which is based on the K-means method , a new approach is develop...
متن کاملUrine Color Identification by Fuzzy C-means Color Quantization
The urine color can be an indication of the status of health, especially for the patients with urinary catheterization after a medical intervention. Urinary tract infections are the most frequently developed infections among patients receiving treatment in medical institutions. Sometimes signs and symptoms of infection can be observed from the urine color. However, it is a difficult task for nu...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2001
ISSN: 1812-5654
DOI: 10.3923/jas.2001.508.511